

Systems Design & Integrated System Health Management (ISHM) Technologies

Dr. Francesca A. Barrientos

Complex System Design & Engineering Group
Discovery and Systems Health Technical Area
Intelligent Systems Division
NASA Ames Research Center

ISHM for Exploration Systems

The art and science of managing off-nominal conditions systems may encounter during their operational life either by designing out failures early on, or designing in the capability to safeguard against or mitigate failures

- Key enabler for crew self sufficiency and even autonomy
- True ISHM has never been achieved
- Key limitation: ISHM typically retrofitted onto subsystems after the vehicle has been designed or even built

ISHM Challenge for Exploration Missions

ISHM design must be part of the overall design process and viewed as a system engineering discipline, encompassing a range of technologies & methods

Facing the Challenge of ISHM Design

- Early influence on system design to guide choice of health management methods and technologies
 - Eliminate/reduce likelihood of failure by design through part selection and built-in redundancy
 - Prognosis in conjunction with preventative maintenance
 - Fault management with diagnosis and recovery technologies
- Failure modes & effects analysis activities for ISHM
 - Feed fault information into the design process to create simulations of faults and improved designs to deal with faults
- The initial design must be examined in the context of the full system life cycle
 - Include all stakeholders (ops, maintenance, etc.) in the design
 - Solution optimized in terms of well-defined Figures of Merit (FOMs)

The current state of ISHM Design

- Insufficient interaction during the design process between failure analysis activities and design processes to prevent or mitigate these failures
- Limited interaction between reliability analyses and design processes
- Little interaction between operational training simulations and assessments of operational dependability and design process
- Operations and maintenance costs and risks become much larger than initially projected during Phase A initial design
- No formal tools and methodologies to allow program managers and engineering designers to formulate a clear understanding of the impact of the decisions on the downstream phases such as operations and maintenance on the systems design, and vice versa

"DESIGN IN" THE ISHM CAPABILITY FROM THE BEGINNING!

- Good news: Current interest is strong!
 - First international forum on Integrated Systems Health Engineering and Management held in November
 - CEV/CLV
- Bad news: We lack methodologies & tools to achieve this!
- Some successful attempts
 - Requirements: Specify ISHM "shall" statements at beginning of project
 - Joint Strike Fighter (5% of requirements are HM related)
 - Boeing 777
 - CEV and CLV (planned)
 - Trade Studies: Integrate ISHM design with system-level design and do trade studies with ISHM as a design attribute
 - Northrop/NASA ARC SA&O effort for 2nd Gen RLV program
 - Honeywell/QSI SA&O and modeling effort
 - Integrate operations and maintenance considerations into design:
 - Boeing 777

The ISHM Design Paradigm: Changing the Way ISHM Design is Done

Proposed Design Paradigm Shift #1: Integrate ISHM design into very early functional design stage (including failure and reliability analyses)

Proposed Design Paradigm Shift #2: Assess impact/tradeoffs of ISHM Figures of Merit (FOMs) on system level FOMs from all stakeholders throughout mission lifecycle

Key Challenges for Paradigm Shift

- Embedding ISHM design into early functional design requires high-level modeling and analyses
 - Models of system components and design parameters are not yet available
 - Integrating health management for complex systems requires capability to model functionality of individual subsystems as well as their interactions
- Conducting failure, reliability and risk analyses during functional design stage
 - Need mathematical techniques for risk assessment and resource allocation under uncertainty must be incorporated with high-level analyses
- Design of ISHM is multidisciplinary and multi-objective by nature
 - Need mathematical framework to achieve effective analysis & optimization
 - Designing an ISHM that encompasses all subsystems of a space mission is the result of interaction among engineers and managers from different disciplines with their own domain expertise

Candidate Design Methods

- Risk and Reliability Based Design Methods
 - PRA, FTA, FMEA/FMECA, reliability block diagrams, event sequence diagrams, safety factors, knowledge-based methods, expert elicitation
- Design for Testability Methods
- Formal design theory and methodology
 - Function-based design and modeling
 - Mathematical techniques:
 - Uncertainty modeling, decision-based design, risk-based design, design optimization, etc.
 - Design for X methodologies
 - Design for *ISHM*, Design for *maintainability*, Design for *failure* prevention, ...

CSDE group R&D efforts

- Function-based modeling and failure analysis
- Risk assessment by portfolio management and optimization
- Multi-objective and multi-disciplinary system analysis & optimization

Function-Based Design, Modeling & Failure Modes Analysis for ISHM Design

- Develop "functional model" of vehicle and ISHM subsystems
- Standardized representation enables retrieval of design knowledge based on common functionality

- Correlate historical and potential failure modes with functionality
- Functional model as living document during system lifecycle from design through operations

The ISHM System Functional *Blueprint*

Ex: Design of the ADAPT testbed at NASA ARC

- Used to discover interfaces and interactions between functions
- Used to add required functionality for ISHM (detect, sense, activate, etc.)
- Used to discover functional failures and add safeguards

Function-Based Failure Modes Analysis

FFMEA Design Interface (w/ UMR)

Resource allocation to minimize risks due to functional failures

- Use of formal risk-based design and optimization techniques for ISHM risk assessment
 - Risk-informed trade study framework to account for risk & uncertainty in early design: RUBIC design
 - Framework for quantifying risk due functional failures and allocating resources for risk reduction during concurrent design
 - Starting from the functional model, RUBIC optimally allocates resources to mitigate risks due to functional failures
 - Ex of resources: hours spent on analysis, redesign, dollars allocated, acquiring more reliable components, adding redundancy, etc.

Resource Reallocation to Minimize Risk and Uncertainty due Functional Failures

Column #	Subsystem	Function	Resource Allocation
1 st	Motor Controller	Import Electrical Energy	<<1%
2 nd	Motor Controller	Export Electrical Energy	4%
3 rd	Motor Controller	Guide Electrical Energy	<<1%
4 th	Motor Controller	Regulate Electrical Energy	36%
5 th	Motor Controller	Guide Electrical Energy	6%
6 th	Motor Controller	Condition Electrical Energy	17%
7 th	Motor Controller	Guide Electrical Energy	<<1%
Total Allocation to Controller Subsystem: 64%			
8th	Motor Controller	Convert Electrical E. to Rotational E.	9%
2 nd	Motor Controller	Convert Rotational E. to Electrical E.	13%
3 rd	Motor Controller	Export Thermal Energy	10%

System Analysis & Optimization (SA&O)

- SA&O Framework (based on prior work done for 2nd Gen RLV)
 - Select a set of Figures-of-Merit
 - Select a set of models---such as cost, safety, operations, reliability, false alarm rates and maintainability---that generate FOMs
 - Determine the tools to implement the models
 - Determine the data flow requirements between the models.
 - Perform trade studies

- Multi-objective & multi-disciplinary optimization
- Data flow/exchange environment (implemented in Model Center)
- Automation for rapid trade analyses
- Ability to feed back into functional design stage:
 - Add new functionality to enable ISHM to operate as an integrated system?
 - Change functionality to enable maintainability, performance, reduce risk?

Mass

Power

Cost

Risk

Schedule

ISHM System Analysis & Optimization

Multi-Disciplinary, Multi-Objective Optimization for ISHM Design

- ISHM design can be formulated as an optimization problem
 - ISHM Design Variables
 - ISHM Objectives (Figures of Merit)
 - ISHM Design Constraints: Feasibility Constraints + Hard Requirements
- Multi-objectives/constraints in each sub-system
 - Functionally separable $F_{i,j}$ and exclusive f_j
 - S Metric to encourage convergence; H Metric to encourage diversity

Summary & Conclusions

- ISHM is a key enabler for exploration systems
- Towards ISHM as a systems engineering discipline and co-design with vehicle systems
- Complex System Design & Engineering Group Research
 - Function based failure modes analysis
 - Risk and uncertainty based design
 - ISHM system analysis and optimization (SA&O)
 - Current Involvement:
 - CEV, CLV for Constellation/ESMD
 - IVHM and Aging Aircraft for Aviation Safety/ARMD

An ISHM design paradigm shift is required for a successful and sustainable exploration endeavor

Questions, Comments, Suggestions

Complex Systems Design & Engineering Group

Intelligent Systems Division, NASA ARC

Francesca Barrientos

francesca.a.barrientos@nasa.gov

Irem Tumer, Group lead

irem.y.tumer@nasa.gov